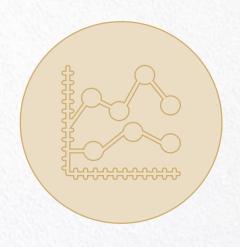


pandas数据处理之 数据分析


朱亚林

基本统计

——以describe()为代表的描述性统计分析函数

基本统计

基本统计分析又称描述性统计分析

describe

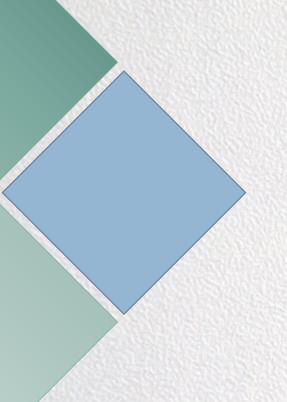
count

mean

std

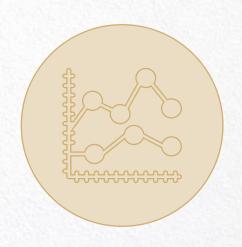
min

max

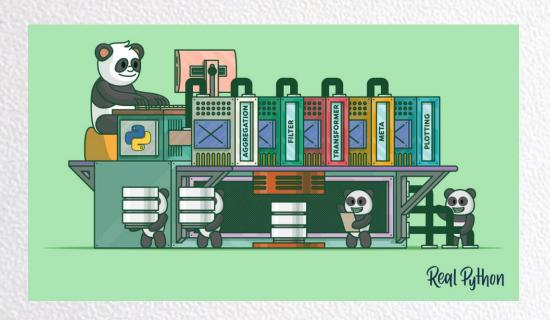

size — 计数

Sum ——^{求利}

var — 方差

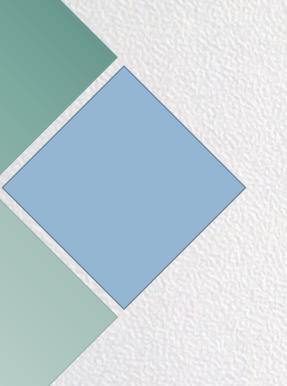

std —标准差

mean ——平均值

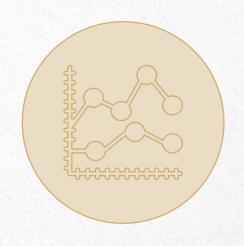

分组分析

——以groupby()为代表的分组统计分析函数

分组分析


- 分组分析是根据分组字段将分析对象划分成不同的部分,以对比分析各组之间差异性。
- ■常用的统计指标有计数、求和以及求平均值。

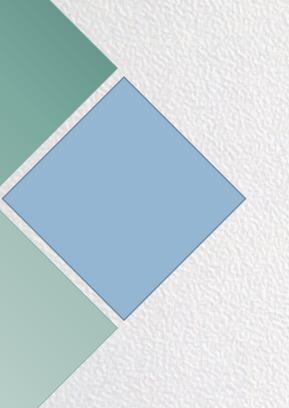
groupby


分组分析

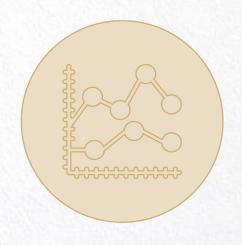
```
>>> import numpy as np
>>> import pandas as pd
>>> df = pd.read_csv('path_of_file')
>>> df['贷款状态']=df['贷款状态'].map(str.strip) #这一步的作用是什么?
>>> df['贷款状态']=df['贷款状态'].map(str.title) #这一步的作用是什么?
>>> df.groupby(by=['评级','贷款状态'])['年收入'].agg({'总数':np.sum,'人数':np.size,'平均值
':np.mean})
```


分布分析

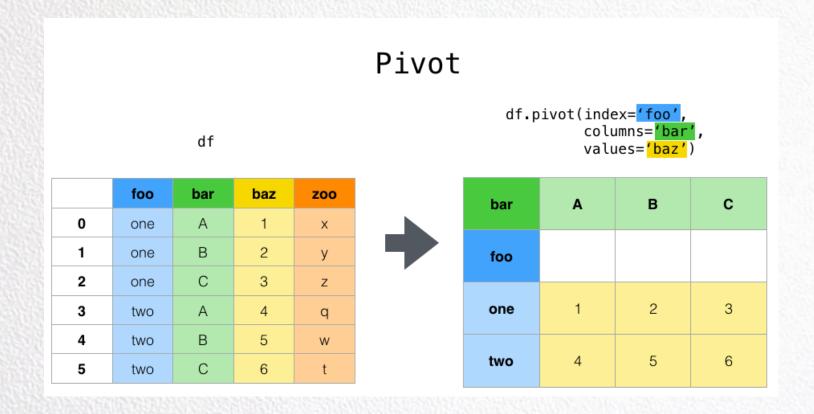
——以cut()为代表的分布统计分析函数



分布分析


■ 分布分析是根据分析的目的,将数据(定量数据)进行等距或不等距的分组, 从而研究各组分布规律的一种分析方法。

cut(series,bins,right,labels)


```
df2=pd.read_csv('loan_data.csv',sep=',',encoding='gb18030')
bins =[0,50000,1000000,2000000,10000000]
group_names = ['D','C','B','A']
df2['categories']=pd.cut(df2['年收入'],bins,labels=group_names,right=True)
```


——以pivot_table()为代表的分布统计分析函数

■ 交叉分析通常用于分析两个或两个以上分组变量之间的关系,以交叉表形式进行变量间关系的对比分析。可以理解为Excel中的数据透视表。

■ pivot_table()函数的用法

pivot_table(values, index, columns, aggfunc='mean', fill_value=None)

参数	说明			
values	接收数据透视表的值			
index	接收数据透视表的行			
columns	接收数据透视表的列			
aggfunc	统计函数			
fill_value	NaN值的统一替换			

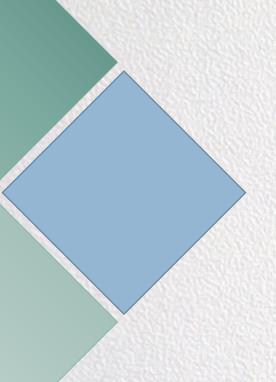
■ pivot_table()函数示例

```
import pandas as pd import numpy as np

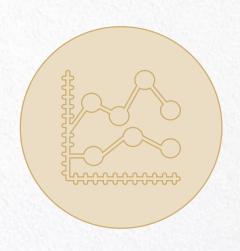
df = pd.read_csv('D:/m4/loan_data.csv',encoding='gb18030')

df['贷款状态']=df['贷款状态'].map(str.strip)

df['贷款状态']=df['贷款状态'].map(str.title)

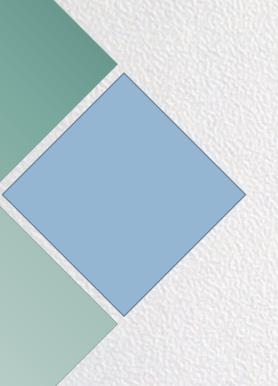

bins = [0,50000,100000,200000,1000000]

group_names = ['D','C','B','A']

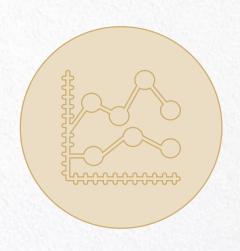

df['分类']=pd.cut(df['年收入'],bins,labels=group_names)

df.pivot_table(values=['贷款数额'],index=['分类'],columns=['贷款状态'],aggfunc=[np.size,np.mean])
```

	size 贷款数额			mean 贷款数额	
	贷款状态	Charged Off	Fully Paid	Charged Off	Fully Paid
	分类				
	D	4.0	16.0	11956.25	5631.250000
	С	5.0	32.0	10293.75	30868.548387
	В	NaN	7.0	NaN	20035.714286
	Α	NaN	1.0	NaN	8000.000000



结构分析



结构分析

- 结构分析就是在分组的基础上计算各组成部分所占的比重,进而分析总体的内部特征的一种分析方法。
- 常用函数有: sum(axis), div(sum(axis),axis)

相关分析

相关分析

■ 相关分析是指研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向及相关程度,是研究随机变量之间相关关系的一种统计方法。

相关系数/范围	相关程度
0≤ r <0.3	低度相关
0.3≤ r <0.8	中度相关
0.8≤ r ≤1	高度相关