

pandas数据处理之 数据处理

执教: 朱亚林

数据清洗

为什么要进行数据清洗

- 数据清洗的目的是: 提高数据质量。
- 数据清洗的主要任务是:处理缺失数据及清除无意义的信息。

重复值的处理

■ 数据录入过程、数据整合过程都可能会产生重复数据,直接删除是重复数据处理的主要方法。

■ pandas提供查看、处理重复数据的方法:

duplicated 和 drop_duplicates

使用duplicated() 查重


```
>>> sample =
```

pd.DataFrame({'id':[1,1,1,3,4,5],'name':['Bob','Bob','Mark','Miki','Sully','Rose'], 'score':[99,99,87,77,77,np.nan],'group':[1,1,1,2,1,2],})

- >>> sample.duplicated() # 以布尔值的形式反馈重复的行
- >>> sample[sample.duplicated()] # 出示重复数据

使用drop_duplicates()去重

■ 对于上题数据,可以使用drop_duplicates()来进行去重

>>> sample =

pd.DataFrame({'id':[1,1,1,3,4,5],'name':['Bob','Bob','Mark','Miki','Sully','Rose'], 'score':[99,99,87,77,77,np.nan],'group':[1,1,1,2,1,2],})

>>> sample.drop_duplicates() # 括号中可设置列名,从而对指定列进行去重。查重亦可

缺失值的处理

■ 数据处理面向的对象更多是我们所说的大数据,大数据中的价值密度低,很多时候会出现值的缺失等等这样一些问题。

缺失值的处理

对于缺失数据一般的处理方式有:

- 删除缺失值
- 增补缺失值
- 不处理

缺失值的处理

简单粗暴型——删除缺失值

使用dropna()函数去除数据结构中值为空的数据行。一般步骤为:

■ 使用isnull()函数来检测是否存在缺失值的情况

可以使用df. isnull().any()查看哪些列有缺失值

可以使用df.apply(lambda col:sum(col.isnull())/col.size)来查看缺失比例

可以使用df[df.isnull().values==True]查看具体缺失值的列

可以使用np. sum (df. isnull(), axis=0) 来统计每一列缺失值的数量

▮ 使用dropna()函数来删除缺失值的行

用指定值来填补缺失值

▮ 指定一个字符或数值来填充空白处,一句话: df.fillna('#')

你可能发现jupyter中数据表太大,你的数据没能显示出来。那就来设置一下pandas中显示的行和列的上限范围吧。比如:设置数据表显示300行就可以用以下语句。

pd.set_option('max_row',300)

用指定值来填补缺失值

■ 使用前一个数据值来替代缺失值:

df.fillna(method='pad')

■ 使用后一个数据值来替代缺失值:

df.fillna(method='bfill')

■ 使用平均数或其他描述性统计量来替代缺失值:

df.fillna(df.mean())--平均值

df.fillna(df.median())--分位数

用指定值来填补缺失值

■ pandas使用strip()函数来清除字符型数据首尾指定的字符,默认为空格,中间的不清除。如:

newDF=df['loan_staus'].strip()

异常值的处理

- 在一组数据当中,有时候会出现一些异常数据(不符合实际,特别大或特别小),这些数据会影响到后续的处理。因此,对于这些个别值(离群点)需要去进行处理。
- ■使用方法对数据中的异常数据进行发现。
- 例如: describe()就可以对每一列数据进行统计,包括计数,均值, std, 各个分位数等。通过观看这些数值之间的关系从而进行判断与调整。

df.describe().astype(np.int64).T
newDF=df.replace(50000,df['loan_amnt'].mean())

数据抽取

什么是数据抽取

■ 数据抽取就是从数据集中将需要用到的数据信息提取出来的操作。

name sex ad. tel.

数据抽取的几种方式

- 字段抽取
- 字段拆分
- 记录抽取
- 随机抽样
- 切片抽取
- 字典数据

字段抽取

■ pandas用slice()函数抽出某列上指定位置的数据,做成新的列。

slice(start,stop)

>>> df.str.slice(0,3) #设置起始终止范围

>>> df.str.slice(6) #设置起始点

字段拆分

■ pandas用split()函数按指定的字符拆分已有的字符串。

split(sep,n,expand=False)

sep->用于分割的字符串

n-> 分割后新增的列数,要注意,n+1应该与实际切割后的字符串列数相等

expand -> True时返回DateFrame

-> False时返回Series

>>> df.str.split('-',2,True)

记录抽取

■ pandas可以根据一定的条件对数据进行抽取。

DataFrame[condition]

condition常见的类型有:

- 1. 比较运算符: <、>、<=、>=、!=
- 2. 范围运算: between(left,right)
- 3. 空置运算: isnull(column)
- 4. 字符匹配: str.contains(pattern,na=False)
- 5. 逻辑运算: &、|、not
- 6. 多个数值匹配: isin()

记录抽取

例:

```
>>> df[df.grade=='A'] # df[df['grade']=='A']
>>> df[df.loan amnt > 25000] #df[df['loan amnt'] > 25000]
>>> df[df.loan amnt.between(25000,35000)]
>>> df[df.annual inc.isnull]
>>> df[df.emp length.str.contains('10+',na=False)]
>>> df[df.sth.isin([a,b,c,d])]
>>> df[(df.loan amnt > 25000) & (df.loan amnt < 35000)]
```


随机抽样

■ 使用randint生成随机数,再将其作为索引值代入DataFrame,从而实现 随机抽样。

```
>>> rand = np.random.randint(0,10,3)
```

>>> df.loc[rand]

切片抽取

■ 切片抽取之一:使用loc方法

DataFrame.loc[行索引名称或条件,列索引名称]

>>> df.loc[3:8]

>>> df.loc[3:8,'loan status']

>>> df.loc[3:8,'loan_status':'emp_length']

切片抽取

■ 切片抽取之二:使用iloc方法

DataFrame.iloc[行索引位置条件,列索引位置条件]

```
>>> df.iloc[3:8,2:5]
```

>>> df.iloc[[2,3,5],[1,2,6]]

>>> df.loc[3:8,'loan_status':'emp_length']

切片抽取

■ 切片抽取之三:使用ix方法

DataFrame.ix[行索引名称、位置、条件,列索引名称、位置]

>>> df.ix[2:6,2]

ix使用注意事项

- 1. 使用ix参数时,尽量保持行索引名称和行索引位置重叠,使用时就无须考虑取值敬意的问题。
- 2. 使用列索引名称,而非列索引位置,主要用来保证代码的可读性。
- 3. 使用列索引位置时需要注解,同样用来保证代码的可读性。
- ix的缺点是在面对数据量巨大的任务时,其效率会低于loc和iloc方法。

- DataFrame可以从字典进行创建,所以将字典数据抽取为DataFrame时 也就非常方便。主要有以下三种方法。
- 将字典中的key和value各作为一列;
- 将字典中的每一个元素作为一列(同长);
- 将字典中的每一个元素作为一列(不同长);

■将字典中的key和value各作为一列

```
>>> d1 = {'a':'[1,2,3]','b':'[4,5,6]'}
>>> a1 = pd.DataFrame.from_dict(d1,orient='index')
>>> a1.index.name='key'
>>> b1 = a1.reset_index()
>>> b1.column=['key','value']
```


■ 将字典中的每一个元素作为一列(同长)

就是DataFrame的生成方法

■ 将字典中的每一个元素作为一列(不同长)

```
>>> d1 = {'a':pd.Series([1,2,3]),'b':pd.Series([4,5,6,7])}
```

$$>>> a1 = pd.DataFrame(d1)$$

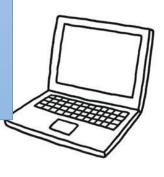
排名索引

排序

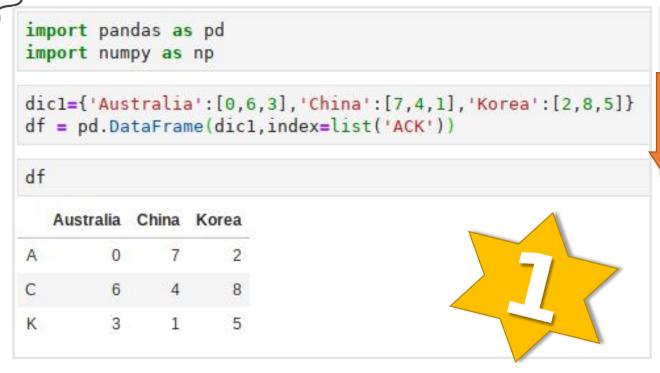
■ 排序是数据处理时的一种常见操作,在pandas当中对数值进行排序主要使用sort_index()函数。

对于Series, sort_index()函数中包含ascending参数。当值为True时进行升序排序,当值为False时,进行降序排序。

对于DataFrame, sort_index()函数中还包含axis和by参数。axis表示排序轴,1为横向,0为纵向。by表示可选择字段进行排序。



排序



Aus	stralia	China	Korea	
	3	1	5	
	6	4	8	
1	0	7	2	

排名

■ 排名函数rank()用来对一组数据进行排名,如存在一组数据4、3、2、3,如果要从小到大对该组数据进行排名,应该排成如下图所示:

数值	4	3	2	3
排名	4	2	1	2

■ rank()函数中的参数之一: ascending: 指定排名方式(正向或逆向)

排名

■ 以上是常规排名方式,在pandas中对于相同两值的排名,默认采取的不是从上一值顺延下来,而取相同值顺次排名下来的平均值。

数值	4	3	2	3
排名	4.0	2.5	1.0	2.5

rank()函数参数之二method,其值有4个可选项

- ✓ average-- 默认,取平均值
- ✓ min -- 如有重复值,均取第1个值出现的排名
- ✓ max -- 如有重复值,均取最后一个值出现的排名
- ✓ first -- 如有重复值,按照出现顺序依次排名

排名

■ rank()函数对于DataFrame而言, 比Series多了一个参数,即axis。

即:排名的方向。

不讲了, 自己悟!

对照sort_index()中的数据进行练习。

重新索引

- 使用reindex()函数对Series对象进行索引重建。
- I reindex()函数有两个参数,即fill_value和method。

fill_value对重建后的内容为空的值进行指定值的填充。

ser.reindex(A,fill value=0)

method指定填充方式,ffill/pad 向前或进位填充,bfill/backfill 向后或进位填充。

ser.reindex(A,method='bfill')

重新索引

- 使用reindex()函数也可对DataFrame对象进行索引重建。
- ■此时的参数中多了一个columns参数,用以设置重建的列名。

df.reindex(index=['a','b','d'],columns=['one','two','five'])

数据合并

■ 所谓堆叠合并数据,就是将两个表按照一定的要求拼在一起。根据拼接的方向,可以分为横向堆叠和纵向堆叠。

■ 对于pandas中的数据堆叠,用得最多的函数就是: concat()

【concat()函数的基本语法

concat(objs,axis=1,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False)

当axis = 1的时候, concat就是行对齐, 然后将不同列名称的两张表合并

result = pd.concat([df1, df4], axis=1)

df1

- 1	A	В	С	D		В	D	F
0	A0	В0	co	D0	2	B2	D2	F2
1	Al	B1	а	D1	3	В3	D3	F3
2	A2	B2	(2	D2	6	В6	D6	F6
3	A3	В3	СЗ	D3	7	B7	D7	F7

	A	В	С	D	В	D	F
0	A0	В0	00	D0	NaN	NaN	NaN
1	A1	B1	Cl	D1	NaN	NaN	NaN
2	A2	B2	C2	D2	B2	D2	F2
3	A3	В3	СЗ	D3	В3	D3	F3
6	NaN	NaN	NaN	NaN	B6	D6	F6
7	NaN	NaN	NaN	NaN	В7	D7	F7

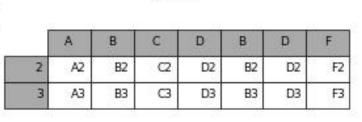
【concat()函数的基本语法

concat(objs,axis=1,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False)

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

result = pd.concat([df1, df4], axis=1, join='inner')

	df1					df	4	
	Α	В	С	D	1	В	D	F
0	A0	В0	00	D0	2	B2	D2	F2
1	A1	B1	а	D1	3	В3	D3	F3
2	A2	B2	C2	D2	6	B6	D6	F6
3	A3	В3	СЗ	D3	7	В7	D7	F7



【concat()函数的基本语法

concat(objs,axis=1,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False)

join_axes的参数传入,可以指定根据那个轴来对齐数据。例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

		ULI		
	Α	В	С	D
0	A0	В0	00	D0
1	A1	B1	Cl	D1
2	A2	B2	C2	D2
3	A3	В3	СЗ	D3

200			- 100
	В	D	F
2	B2	D2	F2
3	В3	D3	F3
6	B6	D6	F6
7	B7	D7	F7

df4

	A	В	С	D	В	D	F
0	A0	BO	o	D0	NaN	NaN	NaN
1	A1	B1	Cl	D1	NaN	NaN	NaN
2	A2	B2	C2	D2	B2	D2	F2
3	A3	В3	СЗ	D3	В3	D3	F3

【concat()函数的基本语法

concat(objs,axis=1,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False)

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就会根据列字段

对齐,然后合并。最后再重新整理一个新的index。

result = pd.concat([df1, df4],
axis=0,ignore_index=True)

	A	В	С	D
0	A0	В0	CO	D0
1	Al	B1	Cl	D1
2	A2	B2	(2	D2
3	АЗ	В3	СЗ	D3
		2007		

	В	E	
2	В2	D D2	F2
3	В3	D3	F3
6	В6	D6	F6
7	В7	D7	F7

	Α	В	C	D	F
0	A0	В0	00	D0	NaN
1	Al	B1	Cl	D1	NaN
2	A2	B2	C2:	D2	NaN
3	ЕА	В3	C3	D3	NaN
4	NaN	B2	NaN	D2	F2
5	NaN	В3	NaN	D3	F3
б	NaN	В6	NaN	D6	F6
7	NaN	B7	NaN	D7	F7

■使用append来对数据进行纵向合并。

result = df1.append(df2,ignore_index=False,verify_integrity=False)

append要求合并的两张表的列名要完全一致。

ignore_index:True为重新索引

verify_integrity:检查数据索引是否冲突

		UII		
- 1	Α	В	С	D
0	A0	BO	00	D0
1	A1	B1	Cl	D1
2	A2	B2	C2	D2
3	A3	В3	СЗ	D3
700	9	df2		
	Α	В	С	D
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	В6	O5	D6
7	A7	B7	C7	D7

	A	В	C	D
0	A0	BO	œ	D0
1	Al	B1	Cl	D1
2	A2	B2	C2	D2
3	A3	В3	СЗ	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	Аб	B6	C6	D6
7	A7	B7	C7	D7

■ 主键合并即通过一个或多个键将两个数据集的行连接起来。针对两张包含不同字段的表,将其根据某几个字段一一对应拼接起来,结果集的列数为两个原数据的和减去连接键的数量。

■ 主键合并使用到的两个函数是merge()和join()。

- merge的操作非常类似sql里面的join。其作用是将两个Dataframe根据一些共有的列连接起来,当然,在实际场景中,这些共有列一般是Id,
- merge的连接方式也丰富多样,可以选择inner(默认), left,right,outer 这几种模式,分别对应的是内连接,左连接,右连接

C

5

merge的默认操作

ро	d.mer	ge(df1,df2)
	key	value_of_df1	value_of_df2
0	Α	0	1
1	Α	2	1
2	С	3	5
3	С	5	5

merge的默认操作使用的是内连接,

即how='inner', on='key',

合并的数据为两个DF中都存在的'key'。

■ merge的LeftMerge

df	1		d	f2	
	key	value_of_df1		key	value_of_df2
0	Α	0	0	Α	1
1	В	1	1	D	3
2	Α	2	2	С	5
3	С	3			
4	В	4			
5	С	5			

	key	value_of_df1	value_of_df2
0	Α	0	1.0
1	В	1	NaN
2	Α	2	1.0
3	С	3	5.0
4	В	4	NaN
5	С	5	5.0

可以看到返回的是df1的所有key值对应的结果,如果在df2中不存在,显示为Nan空值

■ merge的RightMerge

df	1		d	f2	
	key	value_of_df1		key	value_of_df2
0	Α	0	0	Α	1
1	В	1	1	D	3
2	Α	2	2	С	5
3	С	3			
4	В	4			
5	С	5			

	key	value_of_df1	value_of_df2
0	Α	0.0	1
1	Α	2.0	1
2	С	3.0	5
3	С	5.0	5
4	D	NaN	3

可以看到返回的是df2的所有key值对应的结果,如果在df1中不存在,显示为Nan空值

I merge的OuterMerge

df	f1		df	2	
	key	value_of_df1		key	value_of_df2
0	Α	0	0	Α	1
1	В	1	1	D	3
2	Α	2	2	С	5
3	С	3			
4	В	4			
5	С	5			

	key	value_of_df1	value_of_df2
0	Α	0.0	1.0
1	Α	2.0	1.0
2	В	1.0	NaN
3	В	4.0	NaN
4	C	3.0	5.0
5	С	5.0	5.0
6	D	NaN	3.0

这里就是一个并集的形式啦,其实就是一个union的结果,会把key这一列在两个 Dataframe出现的所有值全部显示出来,如果有空值显示为Nan

MultipleKey Merge (基于多个key上的merge)

pd.merge	(df	left.	df	right.	on=['kev1'.	'kev2'	1)
pu.merge	A MIL		MI	I Luit,	011-	NCY1	NCY2	3 7

pd.merge(df_left, df_right,	on=['key1',	'key2'])
-----------------------------	-------------	----------

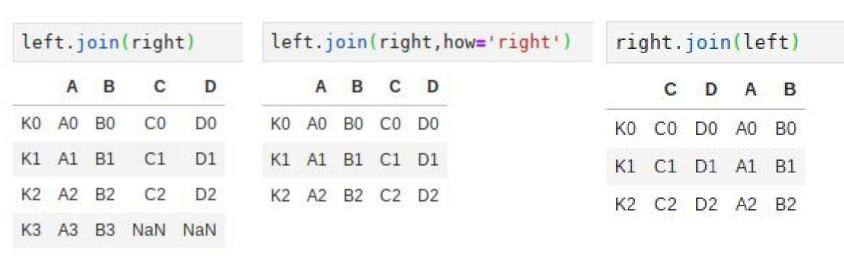
	кеу1	key2	lett_data	right_data
0	SF	one	10	40
1	SF	one	10	50
2	LA	one	30	60

内连接(交集)的结果

	key1	key2	left_data	right_data
0	SF	one	10.0	40.0
1	SF	one	10.0	50.0
2	SF	two	20.0	NaN
3	LA	one	30.0	60.0
4	LA	two	NaN	70.0

■ 使用join()函数也可以实现部分主键的合并功能。但是在使用join()函数时,两个主键的名字必须相同。

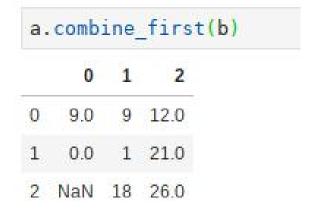
lef	t	
	Α	В
K0	Α0	В0
K1	A1	B1
K2	A2	B2
K3	АЗ	ВЗ
ri	ght	
	С	D
K0	C0	D0
K1	C1	D1
K2	C2	D2



重叠合并数据

■ 对两份数据进行缺失值补充时,可以使用combine_first()函数。即: A表中的数据有缺失,但B表中有部分数据可以用来进行填充。

a				b			
	0	1	2		0	1	2
0	NaN	9	12.0	0	9.0	8	7
1	0.0	1	21.0	1	NaN	1	3
2	NaN	18	NaN	2	NaN	2	26



数据计算

简单计算

■字段间的四则运算

■不同DF之间的四则运算

■ DF与其他值之间的四则运算

df.a * df.b	
df1 * df2	
ari arz	
4€ ¥ ⊃	
df * 3	

数据标准化

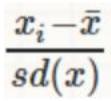
□归一化

就是将训练集中某一列数值特征(假设是第i列)的值缩放到**0**和**1**之间。方法如下所示:

$$\frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)}$$

标准化

就是将训练集中某一列数值特征(假设是第i列)的值缩放成均值为**0**,方差为**1**的状态。如下所示:



数据标准化

■ 归一化和标准化的相同点都是对某个特征(column)进行缩放(scaling)而不是对某个样本的特征向量(row)进行缩放。对特征向量进行缩放是毫无意义的。比如三列特征:身高、体重、血压。每一条样本(row)就是三个这样的值,对这个row无论是进行标准化还是归一化都是好笑的,因为你不能将身高、体重和血压混到一起去!

数据标准化

■一个数据归一化的例子

df	df_c			
	red	blue	green	
0	0	1	2	
1	3	4	5	
2	6	7	8	
3	9	10	11	

	red	blue	green
0	0.000000	0.000000	0.000000
1	0.333333	0.333333	0.333333
2	0.666667	0.666667	0.666667
3	1.000000	1.000000	1.000000

数据分组

数据分组

■数据分组是指根据数据分析对象的特征,按照一定的数据指标,把数据 划分成不同的敬意来进行研究,以提示其内在的联系和规律性。简单地说, 就是新增一列,将原来的数据按照其性质归入新的类别中。

cut(series,bins,right,labels)

```
df2=pd.read_csv('loan_data.csv',sep=',',encoding='gb18030')
```

```
bins =[0,50000,100000,200000,1000000]
group_names = ['D','C','B','A']
df2['categories']=pd.cut(df2['年收入'],bins,labels=group_names,right=True)
```


日期处理

日期处理

■数据分析对象中常常会使用到日期与时间,对于这一类的数据一般会以 文本的形式存在于数据集中。因此,在读入这些数据后,要将其转换成日 期类型就要使用到日期处理的相关功能。pandas中可以快速实现时间字 符串的转换、信息提取和时间运算。

日期转换

■ 日期转换是指将字符型的日期格式转换为日期格式数据的过程。一般使用如下函数。

to_datetime(datestring,format) #此处format是指数据中文本表示时间的格式

参数名称	说明
%Y	代表年份
%m	代表月份
%d	代表日期
%H	代表小时
%M	代表分钟
%S	代表秒

日期格式化

■日期格式化是指将日期型的数据按照指定样式进行表达。

apply(lambda x:pd.datetime.strftime(x,format))

日期抽取

■ 使用代表特殊含义的参数,将日期类型数值中的指定对象提取出来。

date.dt.XXX

参数名称	说明
second	秒,取值为1~60
minute	分,取值为1~60
hour	时,取值为1~24
day	日,取值为1~31
month	月,取值为1~12
year	年
weekday	取值为1~7

Python数据分析与应用

NaN (Not a Number,非数值)

在创建Series时,可以把NaN加入数据结构中的, s=pd.Series([1,np.NaN,2])

识别Series中有/无NaN的方法: s.isnull() / s.notnull() 返回逻辑 Series (由布尔值组成) , 然后可以用作筛选条件

基础运算+-*/与np相同(标量运算)

可以使用np中的数学函数,如np.log(series)

Series对象间的加法,只有两者都有的index才会加,其余的值都为NaN

空值NaN

运算

Series

声明Series对象: s=pd.Series([1,2,3,4], index=['a','b','c','d']), 不指定index时默认为从0递增的数字

a = pd.Series()可以传入np数组,但是要注意这里也是传入引用而不是副本,注意只能传入一维数组

a = pd.Series()还可以传入字典,键会变成index,值会变成value,这里是副本

查看Series的索引数组和值数组: s.index或s.values

获取/修改值元素: s[2] / s['a'] / s[0:2] / s[['b','c']]

筛选元素: s[s>8]

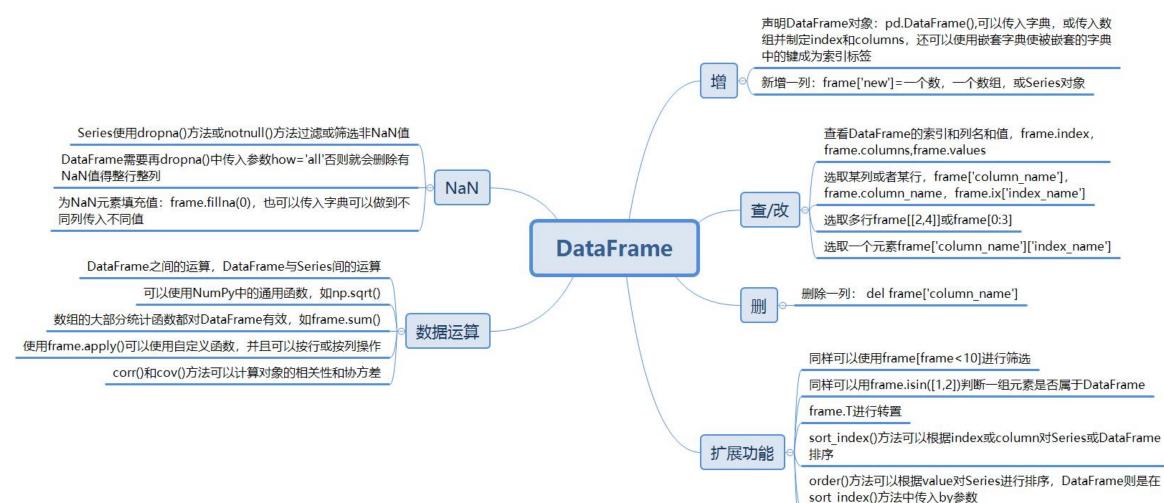
基础

判断一组元素是否属于Series对象, series_name.isin([1,2])返回逻辑数组,因此也可以用于筛洗

根据索引删除值series.drop(),传入值或者数组

https://blog.csdn.net/weixin_43756456

Python数据分析与应用



Series和DataFrame可以建立多级索引,并且可以按层级进行统计